Math 246B Lecture 16 Notes

Daniel Raban

February 25, 2019

1 Jensen's Formula

1.1 Example of entire functions of finite order

Last time, we talked about entire holomorphic functions of finite order $(|f(z)| \leq Ce^{|z|^{\sigma}}$ for some $\sigma \in \mathbb{R}$).

Proposition 1.1. Let f be entire of finite order ρ which is nonvanishing. Then $f = e^g$, where g is a polynomial of degree ρ .

Proof. Write $f = e^g$, where g is entire. For any $\varepsilon > 0$, there exists a constant C_{ε} such that

$$|f(x)| \le C_{\varepsilon} e^{|z|^{\rho + \varepsilon}}$$

So $\operatorname{Re}(g(z)) \leq |z|^{\rho+\varepsilon} + \tilde{C}_{\varepsilon}$. By the Borel-Carathéodory inequality (proved in homework), g is a polynomial of degree $\leq \rho$. As f has order ρ , we get $\operatorname{deg}(g) = \rho$.

1.2 Jensen's formula

Theorem 1.1 (Jensen's formula). Let $f \in \text{Hol}(|z| < R)$, and assume that $f(0) \neq 0$. Let 0 < r < R, and let z_1, \ldots, z_n be the zeros of f in the disc |z| < r, each zero repeated according to its multiplicity. Set $r_j = |z_j|$ for each $1 \le j \le n$. Then

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\varphi})| \, d\varphi = \log \left(\frac{|f(0)|r^n}{r_1 \cdots r_n} \right).$$

If f has no zeros, this integral equals $\log |f(0)|$.

Proof. Replacing f(z) by f(rz), we can assume that r = 1. Split into cases of increasing generality:

1. $f \neq 0$ on $|z| \leq 1$: Then $\log |f|$ is harmonic in a neighborhood of $|z| \leq 1$, and Jensen's formula follows from the mean value property.

2. $f \neq 0$ on |z| = 1: Let

$$B_j(z) = \frac{\overline{z_j}(z - z_j)}{r_j(\overline{z}_j z - 1)}.$$

This is called a **Blaschke factor**. Then B_j is holomorphic near $|z| \leq 1$. B_j has a simple zero at z_j only, and $|B_j(z)| \leq 1$ when |z| = 1. Define $g = f/(B_1 \cdots B_n)$; g is holomorphic near $|z| \leq 1$, nonvanishing, and |g| = |f| when |z| = 1. Apply the previous step to g to get

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(e^{i\varphi})| \, d\varphi = \log |g(0)| = \log \left(\frac{|f(0)|}{r_1 \cdots r_n}\right).$$

3. f has (finitely many) zeros on |z| = 1: Apply Jensen's formula to |z| < r, where r < 1 is close to 1:

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\varphi})| \, d\varphi = \log |g(0)| = \log \left(\frac{|f(0)|r^n}{r_1 \cdots r_n}\right).$$

Let $r \to 1$, and pass to the limit using dominated convergence. If $f(e^{i\varphi_0}) = 0$, estimate $|\log |f(re^{i\varphi})|$ as $r \to 1$ and $|\varphi - \varphi_0|$ is small: $f(z) = (z - e^{i\varphi_0})^m g(z)$, where g is non-vanishing. We need to consider only $|\log |r - e^{i\psi}||$ as $r \to 1$ and ψ is near 0. We get that $|\log |r - e^{i\psi}|| \leq C(1 + \log(1/|\psi|))$. In particular,

$$|r - e^{i\psi}|^2 = r^2 + 1 - 2r\cos(\psi) = r\psi^2 + O(\psi^4),$$

where we have used $\cos(\psi) = 1 - \psi^2/2 + O(\psi^4)$. Altogether, if $\varphi_1, \cdots, \varphi_k$ are the arguments of the zeros of f along the circle |z| = 1, we get:

$$|\log |f(re^{i\varphi})| \le C\left(1 + \sum_{j=1}^k \log_+\left(\frac{1}{|\varphi - \varphi_j|}\right)\right) \in L^1,$$

where $\log_+(t) = \max(\log(t), 0)$. So we can indeed apply the dominated convergence theorem to get Jensen's formula.

1.3 Number of zeros in a disc

Corollary 1.1. Let $f \in \text{Hol}(|z| < R)$, and let n = n(r) be the number of zeros of f in |z| < r, counted with multiplicities. Let the zeros be $z_1, \ldots, z_{n(r)}$ with $r_j = |z_j|$. Then

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\varphi})| \, d\varphi - \log |f(0)| = \int_0^r \frac{n(t)}{t} \, dt.$$

Proof. Rewrite Jensen's formula using the following computation:

$$\log\left(\frac{r^n}{r_1\cdots r_n}\right) = \sum_{j=1}^n \int_{r_j}^r \frac{1}{t} dt$$
$$= \sum_{j=1}^n \int_0^r \frac{\mathbb{1}_{(r_j,\infty)}(r)}{t} dt$$
$$= \int_0^r \frac{1}{t} \underbrace{\left(\sum_{j=1}^n \mathbb{1}_{(r_j,\infty)}(r)\right)}_{=n(t)} dt$$
$$= \int_0^r \frac{n(t)}{t} dt.$$

Remark 1.1. In particular,

$$\int_0^r \frac{n(t)}{t} \, dt \ge \int_{r/2}^r \frac{n(t)}{t} \, dt \ge n(r/2) \log(2).$$

Next time, we will use Jensen's formula to prove the following fact about entire functions of finite order.

Theorem 1.2. Let f be entire of finite order ρ , and let $n(r) = |\{z : |z| < r \cdot f(z) = 0\}|$. Then for all $\varepsilon > 0$ and $r \ge 1$, $n(r) \le C_{\varepsilon} r^{\rho+\varepsilon}$.